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FEATURE ARTICLE

Resonances: Bridge between Spectroscopy and Dynamics

I. Introduction

Dynamical resonances in gas-phase or gas-surface collisions,
refer to long-lived, metastable states of association of molecular
fragments (or a molecule with a surface). These states are also
referred to as quasibound states, metastable states, and bounld
states in the continuum. The theoretical and experimental study
of resonances has grown enormously in the past decade. There
are two broad areas in gas-phase dynamics where resonanc
play a prominent role. One is in photodetachment spectroscopy,
applied to transition state resonances. In this work a neutral,
unbound reactive system is created near the saddle point of
the reaction by detachment of an electron from the correspond-
ing, boundanion. Theoretical and experimental work in this
field up to 1990 has been reviewed by ScHatmd Manol-
opoulog has given a very recent review of the field, with
emphasis on the beautiful comparisons between theory and.
experiment on Fhbi". (Note, not all structure in photodetach-
ment experiments correspond to resonances.)

The second area where resonances play a primary role, the,
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Resonances are metastable, quasibound states of a molecular complex. They are formed predominantly by
vibrational excitation of a molecular complex above a dissociation threshold. Resonances share a number of
features in common with bound states, including the possibility of making spectroscopic assignments of them.
Thus, resonances can be viewed as the bridge between the bound state spectrum, conventionally the domain
of spectroscopy, and the continuum, which is the domain of dynamics. | review a variety of methods from

a number of articles to calculate and characterize resonances, with a special focus on resonances in HCO,
which have been extensively studied both theoretically and experimentally. HCO represents an extreme case,
where most resonances are isolated and nonoverlapping. The effect of overall rotation on resonance positions
and widths of HCO is examined in detail, and | present tests of several approximate treatments of rotation.

| also point out the role that resonances play in the dynamics of unimolecular reactions,—reatigzdl
reactions, and recombination/dissociation reactions, again using HCO as the key example. The use of “reduced
dimensionality” ideas to obtain full dimensional reaction probabilities for a resonance-dominated reaction is
illustrated for the OH+ CO — H + CO; reaction, with special attention to the role of the “spectator” CO-
stretch.

H + CO, in two,18-20 three?-22 four 23 and five®* degrees of
freedom, a reduced dimensionality calculation of resonances in
etene isomerizatioff,and statistical calculations of resonances
in H,CO, which have been measured experimentlly.

The scope of this article must necessarily be limited, and so
focus on two case studies for which there is extensive
theoretical and experimental work: HCO and HOCO. In the
enext section, which is devoted to calculations on HCO, | describe
the various theoretical methods that have been used to calculate
and characterize resonances. The first set of calculations and
comparisons with experiment are for nonrotating HCO. Then

| consider very recent calculations for rotating HCO, using
approximate and exact methods. Following that, | review the
role of resonances in kinetic theories of recombination, and
present results of calculations. This section concludes with a
brief review of scattering calculations of dissociation of HCO
in collisions with Ar. The role of resonances in thetHCO,

— [HOCO] — OH + CO reaction is reviewed in section 3,
with an emphasis on the reduced dimensionality treatment of
eactions that proceed via complex formation. A summary and

subject of this article, is the dynamics of systems supported by 5,6 remarks about possible future directions are given in

wells (e.g., radicatradical systems). For this class of systems

' _section 4.

the wells support bound states as well as resonances, and it is

natural to view resonances as the continuation of the bound- .

state spectrum into the continuum. In this sense, resonanceg‘ Resonances in HCO

are a bridge between spectroscopy and dynamics. Methods and Calculations. Calculations of resonances in
Resonances have been calculated and characterized for a smallCO were first done in 198828 These and later calcula-

number of important radicalradical systems. These include tiong®3were done using the coupled-channel scattering method

the simple dissociation reaction HCOH + CO, about which for zero total angular momentum. The potential used was a

much more will given below, H9— H + O,, OH + 03712, Legendre polynomial representatiérof a global potential

H3 13 LiHF,24-17 the four-atom system HOCE- OH + CO, surface based on ab initio calculatiofis.
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Resonances were found and characterized using the Smith 0.40 ———————————
collision lifetime matrixQ,33 which is given by

J i — o - Off resonance
Q) = s & osf o e

whereE is the total energy an8 is the scattering matrix. In
the vicinity of a resonanc@(E) displays a sharp increase, and
for isolated resonances, Q(E) has a Lorentzian form, which
can be fit to obtain the precise values of the resonance positions
and widths. So-called partial widths, which contain information 0.10
about the decay of a resonance into asymptotic internal states
of the fragments, can also been obtained from the diagonal
elements oQ(E).

The Lorentzian form of TQ(E) follows from the mathemati-
cal definition of a resonance as a first-order pole of the scattering
matrix in the complex energy plane. Thus, for an isolated J
(narrow) resonance, an element of the scattering matrix is givenrigure 1. CO rotational distribution for H+ CO scattering at a
by collision energy of 1664.6404 cth(on resonance) and 1664.6448¢m

(off resonance). The zero of energy istHCO(r).
Ay e _ o Tk

Sv~g-g BTERTI5 (2) the HCO well, both even and odd components are large;
K however, at long range, the even components are much larger
. ) than the odd components. Off resonance, the scattering is
where E¢ and I'y are the position and width of resonance, gominated by the long-range part of the potential, whereas on
respectively, ang andj’ represent initial and final quantum yesonance, the short-range part (the HCO well) dominates the

states. Given this mathematical definition of a resonance, it gynamics. This interesting theoretical prediction has yet to be
immediately follows that the associated transition probability yerified experimentally

Pi—(E), which is simply|S—;(E)|2, is given by

0.20

Probability

0.00

The conventional scattering approach mentioned above does
require an energy-by-energy search for resonances. However,

P (E) = IAjﬂ-'I2 3 this approach can be guided by ttestabilization method which
i (B) = T2 ®3) provides the approximate positions of resonaffc¥sThe basic
(E- Ek)2 + (E) idea in this method is to vary a parameter ofl#nbasis, and

then to plot the eigenvalues of the Hamiltonian as a function of

which is a Lorentzian function. For this to be actually realized this parameter. Resonqnces are |dent|f|.ed. as (unbound) eigen-

. . - g - values that are stable with respect to variation of the parameter.

in a given problem two conditions must be satisfied. First, the hi d lied full CO by Gazd

resonance has to be isolated (i.e., adjacent resonances shoul§ Is procedure was applied successfully to H oy Gazdy et
o 141 Recently, an important extension of the redktabilization

not overlap), and second, the resonance has to be narrow ("e'method has been made by Mandelshtam et al. to also obtain
the so-called background contribution to the scattering has to : .3
. resonance width&:
be constant over the width of the resonance). Complex L2 method b d to obtai
The method to extract resonance information from scattering ompiex methods can be used fo oblain resonance
positions and widths. That such an approach should exist seems

calculations by fitting TQ or scattering probabilities to Lorent- . .
zian forms had been by far the most widespread approach priorVery reasonablg given that a set Of. isolated resonances form a
spectrum with discreteomplexenergies, cf. eq 2. The earliest

to 1995. It was used in the early work of Bowman and Wagner . :

and co-workers to characterize resonances in HCE:3435 method of th_|s type was bast_ed on cc_)mplex sqa‘lihgn this

Very recently, Whittier and Light applied this approach to HCO method the o_hssomatlo_n cc_)ordlnate(s) is rotated into the cor_nplex

for total angular momentum statés= 0, 1, and 3¢ however, plane, causing the klne.tlc energy operator and po“tentlal to

they used a novel, hybritl2-scattering approach termed the becgm? _comp_lex. A varla_nt of this r_net_hod (termed “external

artificial boundary inhomogeneity meth8do calculate thes scall_ng ) n V_Vh'Ch the (_:oord|r_1ate rotation is done or_1|y for_values
of dissociation coordinate in the near asymptotic region has

andQ matrices. tly b lied fully t tating HEO
One of the highlights of the earliest scattering calculations recently been applied successiully to nonrotating C
An alternative to complex scaling is the use of a negative

on H+ CO was the marked change in the rotational state-to- _ ) P i -

state transition probabilitieB;—;(E) at total energies on and 'Maginary absorbing potenti&-*® In this approach the Hamil-

off-resonance. At low collision energies and off resonance the onian is made complex by the addition of the negative
imaginary potential, i.e.,

rotational state-to-state transition probability, for example,
Po—j(E), showed a marked propensity for homonuclear scat- .
tering (i.e.,Po—(E) was small forj’ odd and large foj' even). H=H-1U 4

(This interesting propensity was first seen and nicely explained

in semiclassical calculations of HEO scattering by McCurdy  whereH is the real Hamiltonian, and has the property that it

and Miller28) However, at a slightly different collision energy, vanishes, or is negligible, in the interaction region. This
corresponding to a resonance, this propensity completely approach has been used to obtain resonance energies (positions
disappeared. This behavior, illustrated in Figure 1, was easily and widths) for HCO. Since there is only a single continuum,
understood on the basis of an examination of the Legendrecorresponding to H- CO, the negative imaginary potential was
components of the potential. At short range, in the region of taken to be a function of the distance of H to the center of mass
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of CO, denoted?. In our calculations, two types of absorbing 50T
potentials were usé#>2 (i.e., a quadratic power law potential i
given by a0
U=0, R=R,, and R= R P a0l
A [
R— Ry | g
U= A(Rm — Rm Rmin =R= I:zmax (5a) e 20
ax n,
and the Woods Saxon potential, which is given by 10;
U= 2 (5b) L s
1+ expPB(R, . — R 6000 7000 8000 9000 10000 11000 12000
E (cm")
In both cases the basis (or grid pointsRmust extend t&R = Figure 2. Comparison of calculated energies and widths of nonrotating

Rmax Operationally, the complex eigenvalues are calculated HCO using the RLBH-M surface and the WKS-II surface with

as the parameterd and 8 are varied, and in the case of experiment for the first twenty-three experimentally observed. The zero

. . . . of energy is the HCO zero-point energy. EXP is from ref 80,
:esodnalnces, §tatilllty W;tr,][. res?ﬁCt to Ithgse fparatmeter? |I_|S MONalculations using RLBH-M from ref 49, and those using WKS-II from
ored. In ourimplementation, the real eigenfunctions of H were |t 1.

calculated first by an efficient truncation/recoupling metfidd,
and then the multiple complex diagonalizations were done very \ynere theW,,| are the complex eigenfunctions of-HiU, and

efficiently using the real? eigenfunctions of H. Em — iTw2 are the corresponding complex eigenvalues, in

Absorbing potentials have also been used in time-dependent.a|cylations of photodissociation and photodetachment cross
calculations of HCO resonanc#s:® and also in novel time-  goctigne®.70

independent calculatiort§,using an extension of filter diago-
nalization®” All of these calculations were done for zero total
angular momentum] = 0, except for on® in which the even
parity J = 1 state was also considered. Very recently, a number
of papers have appeared reporting resonance energids>for

0. These will be discussed in the next subsection, where the
effect of rotation on resonances is presented.

All of the calculations noted above were done using the
RLBH3! Legendre polynomial representation of the ab initio
BBH surface3? or with a modification of that surface, which
was made to improve agreement with experiments on the boun
states of HCG?#5?the modified surface is denoted RLBH-M.
A newer potential energy surface has been developed by Werne
et al® Several modifications of this surface were made by using
coordinate scaliri§>°to improve agreement with new experi- )
ments on the bound states and resonance positions. This surfacé?sonance widths.

denoted WKS-II, has been used in calculations of resonances Freciseé measurements of the bound states and many reso-
of HCO and DCCP1-63 The calculations of Keller et 163 nances of HCO have been reported by several gréupysing
were done using a scattering method (i.e., a logarthmic stimulated emission pumping from the HCO B-state. Extensive

derivative version of the Kohn method). In this approach the comparisons with theory have been done using the RLBH-M
experimental spectrum was directly simulated by computing the @1d WKS-II potentials.
Franck-Condon factors of the excited bound vibronic state A sample of the comparisons between theory and experiment
wavefunction with the bound, quasibound, and continuum statesis shown in Figures 2 and 3. In Figure 2 calculated and
of HCO in the ground electronic state. This surface has also €xperimental widths are plotted against the resonance energy
been used in recent extensive wavepacket calculations by Yangor the first 23 experimental resonances. As seen, there is good
and Gray?* qualitative and semi-quantitative agreement between theory and
Itis also important to note that complex absorbing potentials €Xperiment. A comparison betweeen theory and experiment for
are used in the entire range of time-dependent and time- @ selected set of higher energy resonances is shown in Figure
independent dynamics calculatidisand are not restricted to 3. As seen, there is fairly good agreement between theory and
the calculation of resonances. As one example, consider theexperiment, although room for improvement remains. The
photodissociation (or photodetachment) cross section out of thecalculations using the WKS-Il surface are in better quantitative
initial molecular bound stat®;. This cross section is propor- ~agreement with the experiments of Rohlfing and co-workers
tional to [@;|ImG*(E)|®;0whereG™(E) is the outgoing Green’s  than those using the older RLBH-M surface.
function, which can be evaluated using negative imaginary In general, the widths follow the pattefith > I'vena> I'co,
potentials®®-68 In our work, we used the spectral representation Where the subscript indicates the mode excited. This pattern is
of the outgoing Green’s function physically reasonable since excitation of the CH-stretch is
essentially equivalent to excitation of the dissociation coordinate.
1 Excitation of the CO-stretch is least effective in promoting
G'(E) = z'lpmlj : W (6) dissociation, as expected since the CO-stretch is present in both
m (E—-E,+il/2) HCO and the CO product, and hence it is a “spectator’” mode.

To conclude this section on methods, we note that not all
methods to calculate resonances have been reviewed here. |
refer the reader to the excellent and broadly based, (if somewhat
dated) edited volume on resonances in electimolecule, van
der Waals complexes, and reactive scattering calculaticarsg
in particular the chapter by Garrett et’dlin that volume.

Comparisons with Experiment. There have been many
experiments on the bound states and resonances of HCO, so
much so that it qualifies as one of the most thoroughly studied
dtriatomic molecules. Early experiments reporting energies of
excited vibrational states are those Milligan and Ja@ox,
IDixon,74 Murray et al.’”> Rumbles et al’® and Sappey and
Crosley’” In some of these experiments resonances were
inferred; however, none had sufficient resolution to report
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Figure 3. Comparison of calculated and experimental energies and
widths of HCO resonances fdr= 6, K = 0. Experiment (NLBH) is
from ref 79, calculations using RLBH-M from ref 51, and calculations
using WKS-II from ref 64. The first number is the CH-stretch quantum
number, the second is the CO-stretch quantum number, and the third
is the HCO bend quantum number.

Effect of Rotation on Resonances.Most calculations of
resonances have been done for zero total angular momentum
This is understandable given that the computational effort of
an exact calculation grows substantiallyJsicreases. How-
ever, calculations of resonances HCO fogreater than zero
have appeared very recentfy}9.51.63.64.81\We reported the first
exact calculation of resonances for the even-parity component
of theJ = 1 state’® The shifts in resonance energies relative

J. Phys. Chem. A, Vol. 102, No. 18, 1998009
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Figure 4. Comparison of exact—{) and adiabatic rotationQ)
resonance energy shifteE and widthsAT relative toJ = O results for

J=K=1

eq 8 as the principal axis/helicity-conserving approximation.
Recently, Miller and co-workers applied this Hamiltonian with

to the J = 0 ones were interpreted by treating HCO as a very good success to the direct calculation of rate constérits.

symmetric prolate top, with standard rotation constants that

The application of the adiabatic rotation approximation to

depend on the resonance state. However, there did not appearesonances was first tested against our previous exact calcula-
to be an obvious way to interpret the changes in the widths for tions forJ = 151 A comparison of the adiabatic rotation and

J = 1 relative to thel = 0 widths.

exactshiftsin resonance energigsE and widthsAT relative

Recently, we reported a fairly extensive study of the effect to the corresponding = 0 energies and width are given in

of rotation on resonances in HCO using an approximate
treatment of rotation that we have termed the adiabatic rotation
approximatiorP! In that approximation the Hamiltonian is given

by

H'=H""+ E(Q) 7
whereH’=0 is the full Hamiltonian forJ = 0 (which contains

a negative imaginary, absorbing potential in our applications),
and E(Q) is the adiabatic rotational energy for the nuclear
configuration denoted by Q, the collection dfl 3- 6 internal
coordinates. In general, this energy is obtained by diagonal-
ization of the inertia tensor and solution of the usual Sdimger
equation for the rotational energy eigenvalues. The procedure
simplifies for symmetric tops, where the body-fixed projection
quantum ofJ, denotedK, is also a good quantum number. In
this case the rotational energy is given by the usual symmetric
top expression, and for a prolate top

HY = H™%+ BJJ + 1) + (A — B)K? (8)
whereB andA are the coordinate-dependent rotation “constants”
in the principal axis system. (As usudljs the average of the

B and C rotation constants.) This simplified, but very useful
form of the adiabatic rotation Hamiltonian had been used by
us in approximate quantum reactive scattering calculafiéns,
and 20 years ago it was suggested by McCurdy and Miller in
the context of a semiclassical Hamiltoni#&nThey referred to

Figure 4. As seen, there is very good agreement with the exact
results, even though there are substantial variations in Math
andAT'. Note that whileAE is always positiveAT is positive,
negative, and also approximately zero.

Clearly, the shifts in the positions and widths wittand K
depend sensitively on the resonance state. Nevertheless, we
showed that the shifts in resonance positiadis could be fit
reasonably well using the standard expression for rotational
energies of a symmetric top given in eq 8. However, the value
of the rotation constant8 and A depend on the particular
resonance state. This result is shown in Figure 5 wBesiad
A — B are plotted for the bound and resonance states of HCO
for three values of J, anld = 1. As seen, these “constants”,
although highly state-dependent, are nearly independedit of
Also shown in that figure are the rotation constants for the HCO
saddle point and HCO minimum. These are true constants, and
as seen the ones for the minimum are in better average
agreement with the exact, fluctuating ones than are the rotation
constants of the HCO dissociation saddle point. This result has
significance for the validity of thé-shifting approximatior$7—8°
which we discuss next.

In the J-shifting approximatiorf/~8° which was introduced
for reactions that proceed via direct dynamics over a single
transition state, the state-to-state>{) transition probability
P, is related to the one for zero total angular momentum as
follows:

PEA(E) ~ PLT

TUE—ES 9)
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Figure 5. Comparison of théB-rotation andA—B-rotation constants
forJ=1 (), J=6 (x), andJ = 20 (O). States £16 are bound
states and state numbers above 16 are resonanceB-ddrestant and
the A—B constant corresponding to the HCO minimum (long dash)
and saddle point (short dash) are also given.

whereE is the total energy, anE[ﬁ‘K is the rotational energy of
the transition state. (For a linear transition stﬁﬁg depends
only onJ.) The same approximation can be made to the so-
called cumulative reaction probability’*(E), which is the sum
of Pﬁff(E) over i and f. Thus, the simpld-shifting ap-
proximation for the cumulative reaction probability is
N(E) ~ N"(E — E}) (10)

(Note that this approximation follows immediately from the
adiabatic rotation approximation by replaciig(Q) by the
constantE},.)

The J-shifting approximation has been applied to reactions

that proceed mainly via complex formation (i.e.H0,,312.:86.90
OH + CO21-2391gand H+ CO)52 These systems all have wells,

Bowman
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Figure 6. Comparison of exact and approximate, adiabatic rotation
method (ARM), resonance energies and widths of the HCO resonance
(0,0,5) forJ = 6 and 10. The number near each data point is the value
of K. Results are from ref 88.

1000 1500 3000 3500

agreement is seen. Note that the widths of this particular
resonance increases nonlinearly witlover the entire range of
K.

The qualitative behavior of the widths wikhshown in Figure
6 and also in Figure 4 can be understood from simple
perturbation theor§* If we considetH? = © as the zeroth-order
HamiltonianE’(Q) as the perturbation, then to first order, the
shift in theJ = 0 complex resonance energies is given by the
usual expressionz@EX(Q)[x 0] where 3@ is the complex
eigenfunction ofHJ = © for the nth resonance. This complex
energy shift, denotedc?, is given by

n

iATY)

J J
A = AEY —

(11)

where AEY and ATY are the shifts in the position and width

in addition to transition states, that cause pronounced resonancgyf the resonance.

structure in the transition probabilities. Thus, the choice of
nuclear configuration at which to evaluatéﬁ‘K is not as
obvious as in the case of direct reaction. The two obvious

choices, the saddle point and the complex geometry, can give

thermal rate constants that differ by as much as factors of 1.8.

As noted above, we examined these two choices for the rotation
constants and concluded for HCO that the rotation constants of
the HCO complex were on average more accurate than those

of the HCO dissociation saddle point. Another tesi-shifting
at the level of the recombination rate constant will be reviewed
below.

The effect of rotation on resonances in HCO has also been
examined very recently using exact calculations by Whittier and
Light,3¢ Keller and Schinké&? and Yang and Gra$#, who also
tested the adiabatic rotation approximation and found it to be
in good agreement with their exact calculations. A comparison
of their exact and adiabatic rotation approximation widths for
J =6 andJ = 10 is shown in Figure 6, where very good

For a prolate symmetric topE’ is given by the usual
expression, and thus

AP = OB+ 1) + A - B OK?  (12)

If we write ¥ in terms of its real and imaginary components,

2= 60+ i 13)
then we have
AEP =BYJI + 1) + (AP - BO)K?
_ATO®
—=A0+ 1)+ (o) - BOK® (14)

4

where
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BE]O) = E)sﬁ?’|l§|¢§1°)D— BUEOHBWE]O)D (15a) k= Qreac(-l—)ilzeXp(_ﬁEi)w
I
0) _ 3,0 O)1_ 70 (0)
Ao = B WA D B lAm D (150) = [Quond M/ Queae N> (19)
BY = @Bl¢¥0 (16a) whereQcomp is the partition function of the collision complex.
There have been several quantum dynamical formulations of
and recombination reactions, based on the Lindemann mechanism
and with the strong collision assumption. Some time ago, |
af?) = @;0)|A|¢g°)|] (16b) proposed an extension of Smith's theory of atemtom

recombinatior?? to molecular recombinatio?. In this ap-

Thus, to first order, the shifts in both the positions and widths proach,Qeomp Of €9 19 is given by

scale withJ andK according to the symmetric top expression. _
For resonances, the real partxﬂf) is generally much larger Qeomp = de expC-pE)TIQ(E)h (20)

than the imaginary part, and so, in geneBﬁﬂ). and AY are _ whereQ(E) is the Smith collision lifetime matrix, eq 1, which
positive. Thus the shifts in the resonance positions are positive,js ghtained from the full multichannel scattering matrix for the
as expected. However, the shifts in trle widths may be positive, o + g scattering system.
zero, or negative, because the const&@ftsanda”’ may be of This definition of Qcomp Suffers from the possibility of
any sign or approximately zero. (For bound states the energiesnegative values becausetan be negative at energies where
and zeroth-order wave functions are real and so the imaginaryresonances do not form. At resonance energie®, i¥rlarge
part ofAeff*K) is zero.) and positive. This formulation of recombination was used
Perturbation theory thus provides as least a qualitative recently by Kendrick and Pack in an application toHH0,.8
framework to understand the behavior of the shifts in positions They compared.omp using eq 20 directly, with two variants.
and widths of resonances with respect to overall rotation. Of In one only the positive part of @ was used, and in the other
course, the validity of this framework depends on the validity the positive part of T was fit to a Lorentzian. They found
of first-order perturbation theory. 15—24% differences ifQ.ompusing these three approaches, over
We tested the accuracy of first-order perturbation theory and the temperature range 100 to 600 K.
found good accuracy for shifts in widths less than about 10 Recently, Miller proposed another quantum approach to
cm~181 For significantly larger shifts, the accuracy of perturba- obtain the recombination rate constant (still within the strong
tion theory decreases, as expected. The results in Figure 6collision assumption* Miller defined the complex region
confirm this indirectly. As seen, the width shows a nearly using a dividing surface, which typically would be at the
quadratic dependence df, as predicted from perturbation dissociation saddle point or variational transition state. Within
theory, except foK = 10, for which the width is large, and  this region the complex can be stabilized with a classical
where perturbation theory is evidently breaking down. probability
Finally, it is worth noting that another version afshifting
results if the rigorous pertubation expressigf?|EX(Q)|x Vs P=1-exp(-wr) (21)

approximated byEX(@QQ. where is the lifetime of the complex and is the collision
Resonances and Recombination/DissociatiorResonances  fraquency. This is essentially a classical picture: the generaliza-

play an important role in recombination/dissociation reactions o to guantum theory made by Miller was done by using the

guantum flux-flux correlation functionC(t),°> evaluated at the

A+B+M=—=AB+M dividing surface, with the resift

This can be seen even in the simple Lindemann mechanism in 1
which the energized AB complex is treated in steady state and k= Qreac
assumed to be stabilized in every collision with M. That

mechanism leads to the well-known expression for the recom- Miller has shown how his formulation reduces to the Lindemann

[ dt exp(~wt)Cy(h). (22)

t

bination rate constant theory, eq 17, in the limit of a set of dense, but isolated
resonances.
_ We applied Miller's theory to recombination in # CO52
k= —Zexp(—ﬁEi)wK/(w k) (17) however, our calculations were explicitly done only for zero
react | total angular momentum, and tieshifting approximation was

applied to obtain the full rate constant. Making this approxima-

wherek; are the unimolecular decay rates, which in the isolated tion yields the following expression fog(T):

resonance limit are given byi/A, wherer; is the width of the
ith quasibound, resonance statejs the collision frequency, —0o® =0 23
and Qreactis the partition function of the reactants A and B. In k(1) = Qhat (T)k'J M (23)

the quasicontinuum limitg is given by Wherleo(t*)is the rotational partition function of the complex
K (or transition state) and(fZO(T) is the recombination rate
k = 1 dE exp(—ﬁE)p(E)w—(E) (18) constant for zero total angular momentum. As noted above,
Qreac o + K(E) the choice of configuration to evaluate the rotation constants is
not obvious for a radicatradical system. We used the rotation
where p(E) is the density of states, andE) is the microca- constants of the stable HCO to evalua@, The other
nonical rate of decay (typically given by RRKM theory). obvious choice, the recombination saddle point dividing surface,

In the low pressure limit, defined by < k;, we have yielded a partition function 1.8 timeQ%,.
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Figure 7. Flux-flux correlation function for H+ CO at 1000 K rate constant for H- CO.

evaluated at a dividing surface at the4HCO recombination saddle . . . .
Comparison with Experiment. In order to make compari-

point. son of our results with experiment at room temperature, with
6 10" ] Ar as the buffer ga¥ we needed to convert the collision
b ) ] frequency w to the pressure, which is the experimental
PR 107 F Lindemann ] independent variable. We used the simplest kinetic expression,
,'_; 4107 :_ 203 K _ l.e.,
B oswort : ® = ov-=CP (24)
g » 108 3 Miller F RT
51 1 107 E_ _ Wherg a'is the (unknown) average Cross sectiqn for the
~ : ] stabilization reaction, and whetrds the average relative speed
T ——— between Ar and metastable HCO. To determine the constant
0 0.2 0.4 0.6 0.8 1 C we did a least-squares fit of experimental data. Then at one
o(10%ec™ ) value of the pressure we equated the calculated rate constant to
the experimental fit to determine the const&ht The rate
6 10 —————+—+—7+—r—+7+—— 7+ constant from Miller’s theory, using this calibration at one
~ F ] pressure, is plotted in Figure 9 as a solid line, along with the
s 5107 Miller ] experimental data. As seen, the pressure dependence of the
3 F 500 K \ ] . : ,
- 410"k E experimental rate constant is well reproduced by the calculations.
3 : ] A Simple Test of J-Shifting. As already notedJ-shifting
‘%i 31075 q - has been used in calculations of H CO and H+ O
£ _155 Lindemann 7 recombination; in both cases rotation constants of complex were
E 210 E used. Based on the appraisaleghifting for HCO resonances
£ ik 3 given above, the expectation is that using the rotation constants
x i 3 of the complex would be more realistic than using those of
010° e L ] H—CO saddle point. However, we did a direct test fortH
0 0.2 0.4 0.6 0.8 1 CO recombination using the simple Lindemann equation, eq
o (10%ec?) 17 to perform the tesf. Rewriting that equation to display the

) o ) summation of rotational quantum numbers explicitly, we have
Figure 8. H + CO recombination rate constant as a function of

collision frequencyw from Miller’s new theory and the Lindemann 1 ® 3
theory for two temperatures indicated. _ J,K K K
y P k=——>@+1 Y > expE" kDK /(™ + »)

react= K==J"1

The J-shifting approximation also been used by Mandelshtam (25)
et al. in their recent calculation of the recombination rate for H

+ Oy,'2 and also by Germann and Miller in their calculations \here the resonance energies and widths depentiaom K.
of recombination and reaction in H 0% In both cases As already noted, the resonance energies for HCO could be
7ot Of the complex was used. (Below we present a simple test gccurately represented by the symmetric-top expression
of J-shifting for H+CO recombination.)
TheJ = 0 correlation function for H- CO is given in Figure EX=E""+BJ0+1)+(A-B)K* (26)
7 for T= 1000 K and for a dividing surface at the dissociation
saddle point. The negative part corresponds to recrossing,where the state-dependent rotation “constants” are determined
outgoing flux. As seen, the flux leaves the region of the by fitting the calculated shifts in resonance energies to the
complex between 5 and 10 fs. Figure 8 shows the correspondingsymmetric top energy expression for several valuesafdK.
k- at 293 and 500 K along with the approximate results from As seen in Figure 5 these constants vary considerably with the
the Lindemann mechanism. The differences between theresonance state; however, in all cases are the constants nearly
Lindemann and Miller theories are mainly due to the contribu- independent of] and K. (That theJ and K-dependence of
tion from nonresonance scattering states in Miller’s theory.  resonance energies can be represented by eq 26 is significant,
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larger than the correct one. This follows mainly from the small
value of theA constant at the saddle point, which leads to a
significant overestimate of the density of resonances. Thus, for
this example we conclude that using the rotation constants of
the HCO complex is more accurate than using rotation constants
of the saddle point. (Very recently, Miller and co-workers
reported that using rotation constants of the saddle point is quite
accurate for the rate constant of the GHO reactiort9)

Beyond the Strong Collision Assumption. The strong
collision assumption of the Lindemann mechanism is clearly
an oversimplification. A more rigorous approach to recombina-
tion would treat the entire event as a scattering process. This
would be a prohibitively demanding calculation if done exactly.
Thus, we have introduced several approximations in doing such
a calculation in which Ar is the collision partner ¥. First,
we treated the vibrations in a fully coupled fashion but the HCO
rotation was treated using the infinite-order-sudden approxima-
tion. This approach was implemented some time ago for-atom
diatom system&100and was tested by Green et al. for-H
CO at atotal energy of 1 e¥! They found that cross sections
summed over final rotational states that were larger than 0.5
ao? agreed with those obtained in the more accurate centrifugal
sudden approximation to within 15% or less. This result is in
accord with the general expectation that the sudden treatment
of rotation should be more accurate for larger cross sections
than for very small ones.

The generalization of the vibrational coupled-channel/
rotational sudden approximation to polyatomic molecules was
made by Clary and co-worket&who termed the method VCC-
IOS. Their calculations focused on low-lying vibrations, which

and that expression may form the basis of the next generation"ere adequately described by the harmonic-oscillator, normal-

of a J-shifting model.)

The J-shifting approximation to this expression is obtained
by using state-independent rotation constants. For HCO a
equilibrium,B equals 1.40 cmt andA — B equals 23.91 crit.

The corresponding values fBrandA — B at the H-CO saddle
point are 1.31 and 7.0 cth. Thus, the HCO minimum and
saddle-point values d8 are quite similar but the values &f
are quite different.

The recombination rate constant was evaluated using the full
expression, eq 25, and in addition we used Ihe 0 widths
instead of the] andK dependent widths. This simplification

mode approximation. Such a description is not adequate for
highly excited vibrational states. For that purpose we used the

tgeneral Hamiltonian based on Jacobi coordinates. However,

we followed much of the methodology developed by Clary and
co-workers for other aspects of the calculation.

The other approximation we used is the discretization of the
continuum. This approach was suggested 20 years ago by
Wolken'%3and Knapp and DiestléP*who applied it to a model
collinear system. Recently, Nobusada et al. applied this
approach to several dissociation calculations, including one using
the VCC-10S method?®

The VCC-10S Hamiltonian for Ar-HCO is

was adequate for our purposes for two reasons. As seen in

Figure 4, theJ andK dependence of the shifts in the widths
fluctuate about equally positively and negatively relative to the
J = 0 widths, and so using th&= 0 widths is reasonable in

L(L + 1)h? _
H=Hycot+ To+ ——5 T Vi Ry.Qi0.9) (27)

Ar,HCO

averaged sense. Second, as noted already, the widths cancel

out of the expression fd¢ in the fall-off region, which is where

where Hico is the Hamiltonian for nonrotating HCO, the vector

we focused our attention. The recombination rate constant based) is the position vector of Ar with to the center of mass of

on J-shifting simply uses a fixed set of rotation constants in eq

HCO, and6f and ¢ are the polar angles dD relative to a

25. Since the rotation constants in J-shifting are independentmolecule fixed coordinate system in which thexis is along

of the particular resonance, the sums a¥andK can be done

independently to obtain the simple expression given by eq 23
above, where in the teg:{” is the rotational partition func-
tion evaluated at the complex geometry) Or the transition

state §).
The results are shown in Figure 10, where the recombination

the CO bond (which is approximately the symmetric fopxis.)

The internal coordinates of HCO are the usual Jacobi ones, R,
the distance of H to the center-of-mass of GQ,the CO
internuclear distance, and the angle betweeR andr, such

that linear HCO corresponds foequal to zero. The interaction
potentialVin; we used was a simple sum of Lennard-Jones)ar

rate constant based on the state-dependent rotation constantgotentials, where X equals H, C, and O. (This is certainly a

the benchmark result, is shown along with theshifting
approximation for two choices of th& andB constants. As

major approximation and calculations using an ab initio-based
potential are underway.)

seen, the choice of rotation constants corresponding to the HCO The scattering wavefunction is given by a coupled-channel

minimum gives a result that is quite close to the benchmark
result. The recombination rate constant using the rotation

expansion in terms of the HCO vibrational wave functions,
Fn(r,Ry), times unknown radial wave functiong;(Q;6,¢), as

constants corresponding to the H-CO saddle point are muchfollows:
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WHQrRy:0.9) = ZFn(r,R,V)gh(Q:(W) (28) 4T T T
n 03 |
sk (200)
Inserting this expansion of the wave function into the Sdhro < Tk
inger equation yields the standard matrix differential equations £ 02 ¢ resonance
for the radial wave functions: 8 o2} 3
AP E
—K2 L Tt non-resonance ]
5 9-(Qb.g) + 01 f E
ArHCO™ 00 Foi oy S ST
LL+1) _ Livn o\ — " 600 800 1000 1200 1400
—ZN + Y(Q501¢) - E g (Qlea(p) - 0 (29) -1
~ o~ ~| = E(cm™)
whereVyn = Fy|Vint|Fnl Enn = (E — €n)0nn, and where:, are BT T "
the vibrational eigenvalues arilis the total energy. 3 102 ]
After propagating the solution matrig-(Q;0,¢) to the 06 F (102) 3
noninteracting region, the scattering mzﬂ@b(E;H,q&) is ob- “_7:: 3 ]
tained, and from it, the cross section for the transition from the S o4t resonapce —
initial state i to the final state f is given by ~ b E
54 0.2 __ nonresonance E
4 g 3
Q,(E) = —20(2L +DOSE) - "0 (30) ook _
2= 0 = : ——
k‘2 600 800 1000 1200 1400

. . . E(cm™)

where[JS(E)|2Lis the spherical average (8(E;0,¢)/2 This t

cross section is implicitly summed over final rotational states Figure 11. Collision-induced dissociation cross section for the two

of HCO and corresponds to the initial nonrotating state. In our initial HCO states indicated. The curve labeled “resonance” is the cross

implementation of this approach, we preaveraged the interactionSection summed over all resonances. The curve labeled “nonresonance”

. ' - is the cross section summed over all nonresonances.

potential overg to save computer effort, and so the scattering

matrix is only a function o). . . . . .
The one set of results of this calculation that | review here potential energy surface that was used in extensive quasiclassical

are the collision-induced dissociation cross sections. These Weretrajecto_ry calculations” 109_ ) -
calculated for each initial bound state to all final unbound states. 1 ne first quantum calculations of the reaction probability were
To condense the information, the cross sections were summedione by Schatz and DyKé. They used a two-degree-of-
over all final unbound states corresponding to resonances, and®edom, reduced dimensionality approach in which the non-
also separately to unbound, nonresonance states. These crodgactive CO bond was treated as a spectator. The two active
sections are plotted separately for the two largest sets of croslegrees of freedom were the OH bond length and the distance
sections in Figure 11. Both states shown have initial excitation P€tween the OH and CO centers of mass. The full six-degree-
in the CH-stretch. As seen, the cross sections corresponding®f-freedom (DOF) potential was minimized for fixed values of
to resonances are considerably larger than the ones correspond!€S€ two distances with respect to two internal angles and the
ing to excitation of non-resonance states; however, cross section$Pectator CO stretch. At each minimum the local zero-point
to nonresonance states are not negligible. By microscopic €n€rgy of the two bends and CO stretch was calculated and
reversibility this implies that while recombination is dominated @dded to the potential at the minimum.
by resonances, direct recombination from nonresonant scattering The calculated reaction probability exhibited sharp resonant
is not negligible. Clearly the relative importance of resonances Structure which was attributed to quasibound states of HOCO.
in recombination/dissociation is qualitatively governed by the Subsequently, scattering calculations on the 2-DOF reduced
density of resonances. HCO has a fairly sparse set of dimensionality potential were reported by Hernandez and
resonances, and even so, they dominate dissociation, becauselary!® They also reported calculations of the resonance
energy transfer to (and from them) is far more probable than to positions and widths, using a stabilization method recently
non-resonance scattering states. However, as recently showrgxtended developed by Mandelshtam and Tdyfgf to also
by Pack and co-worket® for atom-atom recombination,  Pprovide resonance widths. They found generally good agree-
nonresonant dissociation can dominate resonant dissociation ifment between the stabilization results and the exact results from
the spectrum of resonances is very sparse. the scattering calculation. However, widths from the stabiliza-
Next, | review our calculations on resonances in HOCO, and tion calculations were not reported for a number of the narrower
raise issues about reduced-dimensionality approaches to describeesonances. We recently used a complex absorbing potential
reactions in larger systems that are dominated by resonancesin the two arrangement channels, GHCO and H+ CO;, and
HOCO. The reaction OH+ CO — H + CO, is of an extended.? basis to calculate the resonances of the 2-DOF
importance in combustion and in atmospheric chemistry, and Hamiltonian?® We obtained very good agreement for the
from a basic research perspective it has become an importanfositions and widths for all the resonances reported in the
prototype of reactions that proceed via complex formation. The scattering calculations, as shown in Table 1.
reaction has been extensively studied both and theoretically and There have also been limited Z-4- 2% and 5-DOF* quantum
experimentally. (References to the extensive experimental calculations of the reaction probabilities for this reaction.
literature can be found in the theoretical papers, cited below.) However, these were for a limited number of initial rotational
Theoretical interest in this reaction began with a realistic states of OH, and so it was not possible to use standard energy-
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TABLE 1: Comparison of Present Resonance Energies and 200000 [T T T T T T T T T
Widths for HOCO with Those of Hernandez and Clary (HC)
(Reference 19)

E (cm™) T (cmY) 15000.0 |-

present HC-scatt HC-stab present HC-scatt HC-stab

2699.0 2698.0 2698.0 0.092 0.141 ~:' 10000.0 [ ]

2730.0  2729.0 2728.0 1.65 1.82 2.16

2752.2 2748.0 2754.0 0.89 1.10

2768.3 2766.0 2769.0 0.54 0.527 5000.0 [ .

3241.3 3240.0 3241.0 0.37 0.406

3282.6  3280.0 3281.0 1.13 1.22 1.01

3308.6 3307.0 3307.0 2.42 2.71 2.25 0.0 raur —l

3762.8 3761.0 3762.0 0.63 0.745 3000 4000 5000 6000 7000

3815.6  3814.0 3813.0 0.25 0.252 Energy (cm )

igggg igggg igggg ?11‘21 igg igi Figure 12. Cumulative reaction probablity for Ot CO— H + CO,.
4353.4 4351.0 4352.0 0.25 0.225

44245  4423.0 4422.0 4.96 4.63 451 sionality CRP to get the best approximate full dimensional CRP.
4699.4  4696.0 4698.0 3.24 3.48 2.99 That is, shouldN(E) be approximated by transition state theory
48825 48800  4880.0 029 0.291 appropriate for a direct reaction or by statistical theory, which
g?ﬂ:g ‘51%3:8 ggﬁg:g g:;‘; g:gg g:?g is _appropriate _for a complex-forming reaction? The energy-
53985 5396.0  5396.0 1.76 2.00 288 shifting approximation used above assumes that the dynamical
5494.9 5490.0 5493.0 7.21 6.65 2091 bottleneck in going from 2-DOF to 6-DOF is at the exit
5528.3 5527.0 5526.0 5.71 7.49 5.48 transition state. However, other choices are possible, and the
58209 58160  5820.0  6.54 7.00 8.06 “correct” choice is still an open question. A detailed discussion
5915.6 5912.0 5914.0 0.48 0.430 of this important point can be found in papers by Dzegilenko
6072.2 6073.0 6071.0 15.3

60865  6080.0 6090.0 179 and Bowmaf! and Wang et al!!

6410.5 9.59 Another important issue is the treatment of the CO spectator
ggég-g 1;-;9 mode in the OH+ CO reaction. As noted above, the CO-

stretch was decoupled in all quantum scattering calculations
performed to date. The possible justification for this is that

shifting approach@&88to obtain an approximate, full 6-DOF  this bond is nonreactive, meaning that it is present both in the
cumulative reaction probability (CRP). For that reason, we used réactants and in the products. Thus, one can expect that it does
the 2-DOF scattering calculatioé®to obtain an approximate ~ not actively exchange energy with the other five modes and

6-DOF CRP. Thus, the approximate 6-DOF CRP was given could be treated adiabatically or simply averaged over. How-
byo1 ever, there are two nagging counterpoints to this argument. The

most evident one is that while the CO-stretch is a “normal mode”

7352.9 9.39

J B for the CO molecule, it is not for CO (The difference between
N(E) = Z(Z\] +1) Z N'=E — Ej) (31) the symmetric and antisymmetric stretches in,G©slightly
K==J more than 1000 cri indicating that CQ@ cannot be described,
even approximately, as two uncoupled CO oscillators.) The
other point is that HOCO resonances in which the CO-stretch
is highly excited certainly exist. What is not known is the extent
to which these resonances contribute to the CRP. Also, a related
issue is whether the inclusion of the CO-stretch can be
and whereN2POF(E) is the 2-DOF CRP (which we obtained —approximated by a simple energy-shift approximation, as was
from previous scattering calculatidfi€9, E; are the quantized ~ done in eq 31. Note this energy shift, when applied to
energies at the cis HCO; transition state (using the harmonic ~ resonances, simply means that 3-DOF resonances are ap-
normal mode frequencies) not explicitly included in the 2-DOF Proximated by the set of 2-DOF resonances shifted by the
Hamiltonian, andExk are the rotational energies of HOCO, addition of CO vibrational energies.
treated as a symmetric prolate top. We considered two To begin an examination of the role played by the CO stretch
configurations in which to obtain rotation constants forJ(t€)- we performed 3-DOF compléx calculations of 218 resonances
shifting, and found a factor of about 1.5 difference in the with the CO mode explicitly consideréd. We were able to
resulting rate constant, with the+HCO, transition state rate  assign quantum numbers to many of these resonances, and could
constant being about 1.5 times smaller than the rate constantidentify those that correspond to highly excited CO. The
using the rotation constants of HOCO. The approximate N(E) spectrum of these 3-DOF resonances is shown in Figure 13
given above and using the transition state rotation constants isalong with the previous 2-DOF resonances for energies in which
shown in Figure 12. As seen, it is highly structured, but on the both OH+ CO and H+ CO, channels are open. As seen,
average increasing with E, the total energy. The increase withthere is a distinct set of additional resonances that stand out
E is due to overlapping of resonances in the 2-DOF scattering from the 2-DOF ones in having much smaller widths than the
calculation. widths 2-DOF resonances. These narrow resonances are ones
While it is clear that the exad¥(E) is all that is needed to  in which the CO-stretch is highly excited. We next examined
obtain the exact bimolecular rate constant, independent ofthe extent to which these additional resonances could be
whether the reaction is characterized as “direct” or “complex” recovered using a simple CO-stretch energy shift applied to the
(i.e., resonance-dominated), there does exist some ambiguity2-DOF resonances. (We used a simple harmonic approximation
about the proper approximation to make to a reduced dimen- for the CO-stretch vibrational energy, and used the frequency

where

N=%E) = § N*PFE - E) (32)

n=|
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Figure 13. Three-DOF @) and 2-DOF Q) energies and widths of
nonrotating HOCO resonances.

10° F 1 T

T (em)

-4000 -2000 0 2000 4000 6000

Energy (cm™ ')

Figure 14. Three-DOF @) and energy-shifted 2-DOFJ) energies
and widths of nonrotating HOCO resonances.

of the CO-mode in HOCO, 1875 crh) The results are shown
graphically in Figure 14 for the entire energy range spanning

energies where the HOCO complex can decompose. As seen
the detailed results are at least qualitatively similar, and coarse-

grained averaging shows semiquantitative agreefieitote
especially that the additional narrow resonances in Figure 12
for energies above 3000 cthappear in this figure by applying
the energy-shift to the 2-DOF resonances.

Thus, most of the narrow 3-DOF resonances are built on low-
energy 2-DOF resonances with the addition of CO vibrational
excitation. Note that the widths of the shifted 2-DOF resonances

Bowman

were presented. The importance of resonances in the Linde-
mann theory of dissociation/recombination reactions was de-
scribed, as was an application of Miller's new theory of
recombination to H+ CO. The first calculations to describe
dissociation of HCO in collisions with Ar using scattering theory
were also reviewed. Resonances in HCO were shown to play
a major, though not totally dominant role in dissociation/
recombination. More calculations of this type will be useful
in order to test and modify the “strong collision assumption”,
which is made in the Lindemann theory as well as Miller’s new
theory. It will also be important also to develop realistic
interaction potentials for recombination dynamics.

| also reviewed reduced dimensionality models for resonances
and the cumulative reaction probability for the-H CO, —
[HOCO]— OH + CO reaction. An important issue that needs
further study is how to best approximate the full dimensionality
cumulative reaction probability from a reduced dimensionality
calculation (i.e., whether the standard energy-shift approach
continues to be apply, or whether a statistical treatment of
uncoupled degrees of freedom is better). A partial study of this
was reviewed by examining the role of the spectator CO-stretch
in the spectrum of HOCO resonances. This was done for the
three-degree-of-freedom model with those of a 2-DOF model
which does not include coupling to the CO-stretch. While not
all the 3-DOF resonances can be accounted for by applying
simple energy-shifts to the 2-DOF spectrum, most were. This
provides some evidence that simple energy-shifting may still
apply to complex-forming reactions. A definitive test in which
energy shifting applied to the 2-DOF cumulative reaction
probability is compared to the 3-DOF cumulative reaction
probability needs to be done.
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