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Resonances are metastable, quasibound states of a molecular complex. They are formed predominantly by
vibrational excitation of a molecular complex above a dissociation threshold. Resonances share a number of
features in common with bound states, including the possibility of making spectroscopic assignments of them.
Thus, resonances can be viewed as the bridge between the bound state spectrum, conventionally the domain
of spectroscopy, and the continuum, which is the domain of dynamics. I review a variety of methods from
a number of articles to calculate and characterize resonances, with a special focus on resonances in HCO,
which have been extensively studied both theoretically and experimentally. HCO represents an extreme case,
where most resonances are isolated and nonoverlapping. The effect of overall rotation on resonance positions
and widths of HCO is examined in detail, and I present tests of several approximate treatments of rotation.
I also point out the role that resonances play in the dynamics of unimolecular reactions, radical-radical
reactions, and recombination/dissociation reactions, again using HCO as the key example. The use of “reduced
dimensionality” ideas to obtain full dimensional reaction probabilities for a resonance-dominated reaction is
illustrated for the OH+ COf H + CO2 reaction, with special attention to the role of the “spectator” CO-
stretch.

I. Introduction

Dynamical resonances in gas-phase or gas-surface collisions
refer to long-lived, metastable states of association of molecular
fragments (or a molecule with a surface). These states are also
referred to as quasibound states, metastable states, and bound
states in the continuum. The theoretical and experimental study
of resonances has grown enormously in the past decade. There
are two broad areas in gas-phase dynamics where resonances
play a prominent role. One is in photodetachment spectroscopy,
applied to transition state resonances. In this work a neutral,
unbound, reactive system is created near the saddle point of
the reaction by detachment of an electron from the correspond-
ing, boundanion. Theoretical and experimental work in this
field up to 1990 has been reviewed by Schatz,1 and Manol-
opoulos2 has given a very recent review of the field, with
emphasis on the beautiful comparisons between theory and
experiment on FH2-. (Note, not all structure in photodetach-
ment experiments correspond to resonances.)
The second area where resonances play a primary role, the

subject of this article, is the dynamics of systems supported by
wells (e.g., radical-radical systems). For this class of systems,
the wells support bound states as well as resonances, and it is
natural to view resonances as the continuation of the bound-
state spectrum into the continuum. In this sense, resonances
are a bridge between spectroscopy and dynamics.
Resonances have been calculated and characterized for a small

number of important radical-radical systems. These include
the simple dissociation reaction HCOf H + CO, about which
much more will given below, HO2 f H + O2, OH + O,3-12,
H3

+,13 LiHF,14-17 the four-atom system HOCOf OH + CO,

H + CO2, in two,18-20 three,21,22 four,23 and five24 degrees of
freedom, a reduced dimensionality calculation of resonances in
ketene isomerization,25 and statistical calculations of resonances
in H2CO, which have been measured experimentally.26

The scope of this article must necessarily be limited, and so
I focus on two case studies for which there is extensive
theoretical and experimental work: HCO and HOCO. In the
next section, which is devoted to calculations on HCO, I describe
the various theoretical methods that have been used to calculate
and characterize resonances. The first set of calculations and
comparisons with experiment are for nonrotating HCO. Then
I consider very recent calculations for rotating HCO, using
approximate and exact methods. Following that, I review the
role of resonances in kinetic theories of recombination, and
present results of calculations. This section concludes with a
brief review of scattering calculations of dissociation of HCO
in collisions with Ar. The role of resonances in the H+ CO2

f [HOCO] f OH + CO reaction is reviewed in section 3,
with an emphasis on the reduced dimensionality treatment of
reactions that proceed via complex formation. A summary and
some remarks about possible future directions are given in
section 4.

2. Resonances in HCO

Methods and Calculations. Calculations of resonances in
HCO were first done in 1986.27,28 These and later calcula-
tions29,30were done using the coupled-channel scattering method
for zero total angular momentum. The potential used was a
Legendre polynomial representation31 of a global potential
surface based on ab initio calculations.32
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Resonances were found and characterized using the Smith
collision lifetime matrixQ,33 which is given by

whereE is the total energy andS is the scattering matrix. In
the vicinity of a resonanceQ(E) displays a sharp increase, and
for isolated resonances, TrQ(E) has a Lorentzian form, which
can be fit to obtain the precise values of the resonance positions
and widths. So-called partial widths, which contain information
about the decay of a resonance into asymptotic internal states
of the fragments, can also been obtained from the diagonal
elements ofQ(E).
The Lorentzian form of TrQ(E) follows from the mathemati-

cal definition of a resonance as a first-order pole of the scattering
matrix in the complex energy plane. Thus, for an isolated
(narrow) resonance, an element of the scattering matrix is given
by

where Ek and Γk are the position and width of resonance,
respectively, andj and j′ represent initial and final quantum
states. Given this mathematical definition of a resonance, it
immediately follows that the associated transition probability
Pjfj′(E), which is simply|Sjfj′(E)|2, is given by

which is a Lorentzian function. For this to be actually realized
in a given problem two conditions must be satisfied. First, the
resonance has to be isolated (i.e., adjacent resonances should
not overlap), and second, the resonance has to be narrow (i.e.,
the so-called background contribution to the scattering has to
be constant over the width of the resonance).
The method to extract resonance information from scattering

calculations by fitting TrQ or scattering probabilities to Lorent-
zian forms had been by far the most widespread approach prior
to 1995. It was used in the early work of Bowman and Wagner
and co-workers to characterize resonances in HCO.27-30,34,35

Very recently, Whittier and Light applied this approach to HCO
for total angular momentum statesJ ) 0, 1, and 3;36 however,
they used a novel, hybridL2-scattering approach termed the
artificial boundary inhomogeneity method37 to calculate theS
andQ matrices.
One of the highlights of the earliest scattering calculations

on H + CO was the marked change in the rotational state-to-
state transition probabilitiesPjfj′(E) at total energies on and
off-resonance. At low collision energies and off resonance the
rotational state-to-state transition probability, for example,
P0fj′(E), showed a marked propensity for homonuclear scat-
tering (i.e.,P0fj′(E) was small forj′ odd and large forj′ even).
(This interesting propensity was first seen and nicely explained
in semiclassical calculations of He-CO scattering by McCurdy
and Miller.38) However, at a slightly different collision energy,
corresponding to a resonance, this propensity completely
disappeared. This behavior, illustrated in Figure 1, was easily
understood on the basis of an examination of the Legendre
components of the potential. At short range, in the region of

the HCO well, both even and odd components are large;
however, at long range, the even components are much larger
than the odd components. Off resonance, the scattering is
dominated by the long-range part of the potential, whereas on
resonance, the short-range part (the HCO well) dominates the
dynamics. This interesting theoretical prediction has yet to be
verified experimentally
The conventional scattering approach mentioned above does

require an energy-by-energy search for resonances. However,
this approach can be guided by theL2 stabilization method which
provides the approximate positions of resonances39,40 The basic
idea in this method is to vary a parameter of anL2 basis, and
then to plot the eigenvalues of the Hamiltonian as a function of
this parameter. Resonances are identified as (unbound) eigen-
values that are stable with respect to variation of the parameter.
This procedure was applied successfully to HCO by Gazdy et
al.41 Recently, an important extension of the realL2 stabilization
method has been made by Mandelshtam et al. to also obtain
resonance widths.42,43

Complex L2 methods can be used to obtain resonance
positions and widths. That such an approach should exist seems
very reasonable given that a set of isolated resonances form a
spectrum with discretecomplexenergies, cf. eq 2. The earliest
method of this type was based on complex scaling.44 In this
method the dissociation coordinate(s) is rotated into the complex
plane, causing the kinetic energy operator and potential to
become complex. A variant of this method (termed “external
scaling”) in which the coordinate rotation is done only for values
of dissociation coordinate in the near asymptotic region has
recently been applied successfully to nonrotating HCO.45

An alternative to complex scaling is the use of a negative
imaginary absorbing potential.46-48 In this approach the Hamil-
tonian is made complex by the addition of the negative
imaginary potential, i.e.,

whereH is the real Hamiltonian, andU has the property that it
vanishes, or is negligible, in the interaction region. This
approach has been used to obtain resonance energies (positions
and widths) for HCO. Since there is only a single continuum,
corresponding to H+ CO, the negative imaginary potential was
taken to be a function of the distance of H to the center of mass

Q(E) ) ipS(E)
dS†(E)
dE

(1)

Sjfj′ )
Ajfj′

E- Ẽk
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Γk
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Figure 1. CO rotational distribution for H+ CO scattering at a
collision energy of 1664.6404 cm-1 (on resonance) and 1664.6448 cm-1

(off resonance). The zero of energy is H+ CO(re).

Hc ) H - iU (4)
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of CO, denotedR. In our calculations, two types of absorbing
potentials were used49-52 (i.e., a quadratic power law potential
given by

and the Woods-Saxon potential, which is given by

In both cases the basis (or grid points) inRmust extend toR)
Rmax. Operationally, the complex eigenvalues are calculated
as the parametersλ and â are varied, and in the case of
resonances, stability with respect to these parameters is moni-
tored. In our implementation, the real eigenfunctions of H were
calculated first by an efficient truncation/recoupling method,53

and then the multiple complex diagonalizations were done very
efficiently using the realL2 eigenfunctions of H.
Absorbing potentials have also been used in time-dependent

calculations of HCO resonances,54,55 and also in novel time-
independent calculations,56 using an extension of filter diago-
nalization.57 All of these calculations were done for zero total
angular momentum,J ) 0, except for one49 in which the even
parityJ) 1 state was also considered. Very recently, a number
of papers have appeared reporting resonance energies forJ >
0. These will be discussed in the next subsection, where the
effect of rotation on resonances is presented.
All of the calculations noted above were done using the

RLBH31 Legendre polynomial representation of the ab initio
BBH surface,32 or with a modification of that surface, which
was made to improve agreement with experiments on the bound
states of HCO;58,59 the modified surface is denoted RLBH-M.
A newer potential energy surface has been developed by Werner
et al.60 Several modifications of this surface were made by using
coordinate scaling58,59 to improve agreement with new experi-
ments on the bound states and resonance positions. This surface,
denoted WKS-II, has been used in calculations of resonances
of HCO and DCO.61-63 The calculations of Keller et al.61-63

were done using a scattering method (i.e., a logarthmic
derivative version of the Kohn method). In this approach the
experimental spectrum was directly simulated by computing the
Franck-Condon factors of the excited bound vibronic state
wavefunction with the bound, quasibound, and continuum states
of HCO in the ground electronic state. This surface has also
been used in recent extensive wavepacket calculations by Yang
and Gray.64

It is also important to note that complex absorbing potentials
are used in the entire range of time-dependent and time-
independent dynamics calculations,65 and are not restricted to
the calculation of resonances. As one example, consider the
photodissociation (or photodetachment) cross section out of the
initial molecular bound stateΦi. This cross section is propor-
tional to〈Φi|ImG+(E)|Φi〉 whereG+(E) is the outgoing Green’s
function, which can be evaluated using negative imaginary
potentials.66-68 In our work, we used the spectral representation
of the outgoing Green’s function

where the〈Ψm| are the complex eigenfunctions of H- iU, and
Em - iΓm/2 are the corresponding complex eigenvalues, in
calculations of photodissociation and photodetachment cross
sections.69,70

To conclude this section on methods, we note that not all
methods to calculate resonances have been reviewed here. I
refer the reader to the excellent and broadly based, (if somewhat
dated) edited volume on resonances in electron-molecule, van
der Waals complexes, and reactive scattering calculations,71 and
in particular the chapter by Garrett et al.72 in that volume.
Comparisons with Experiment. There have been many

experiments on the bound states and resonances of HCO, so
much so that it qualifies as one of the most thoroughly studied
triatomic molecules. Early experiments reporting energies of
excited vibrational states are those Milligan and Jacox,73

Dixon,74 Murray et al.,75 Rumbles et al.,76 and Sappey and
Crosley.77 In some of these experiments resonances were
inferred; however, none had sufficient resolution to report
resonance widths.
Precise measurements of the bound states and many reso-

nances of HCO have been reported by several groups,78-80 using
stimulated emission pumping from the HCO B-state. Extensive
comparisons with theory have been done using the RLBH-M
and WKS-II potentials.
A sample of the comparisons between theory and experiment

is shown in Figures 2 and 3. In Figure 2 calculated and
experimental widths are plotted against the resonance energy
for the first 23 experimental resonances. As seen, there is good
qualitative and semi-quantitative agreement between theory and
experiment. A comparison betweeen theory and experiment for
a selected set of higher energy resonances is shown in Figure
3. As seen, there is fairly good agreement between theory and
experiment, although room for improvement remains. The
calculations using the WKS-II surface are in better quantitative
agreement with the experiments of Rohlfing and co-workers
than those using the older RLBH-M surface.
In general, the widths follow the patternΓCH > Γbend> ΓCO,

where the subscript indicates the mode excited. This pattern is
physically reasonable since excitation of the CH-stretch is
essentially equivalent to excitation of the dissociation coordinate.
Excitation of the CO-stretch is least effective in promoting
dissociation, as expected since the CO-stretch is present in both
HCO and the CO product, and hence it is a “spectator” mode.

U ) 0, Re Rmin and Rg Rmax

U ) λ( R- Rmin
Rmax- Rmin)

2

Rmin e Re Rmax (5a)

U ) 2λ
1+ exp[â(Rmax- R)]

(5b)

G+(E) ) ∑
m

|Ψm〉
1

(E- Em + iΓm/2)
〈Ψm| (6)

Figure 2. Comparison of calculated energies and widths of nonrotating
HCO using the RLBH-M surface and the WKS-II surface with
experiment for the first twenty-three experimentally observed. The zero
of energy is the HCO zero-point energy. EXP is from ref 80,
calculations using RLBH-M from ref 49, and those using WKS-II from
ref 61.
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Effect of Rotation on Resonances.Most calculations of
resonances have been done for zero total angular momentum.
This is understandable given that the computational effort of
an exact calculation grows substantially asJ increases. How-
ever, calculations of resonances HCO forJ greater than zero
have appeared very recently.36,49,51,63,64,81We reported the first
exact calculation of resonances for the even-parity component
of the J ) 1 state.49 The shifts in resonance energies relative
to the J ) 0 ones were interpreted by treating HCO as a
symmetric prolate top, with standard rotation constants that
depend on the resonance state. However, there did not appear
to be an obvious way to interpret the changes in the widths for
J ) 1 relative to theJ ) 0 widths.
Recently, we reported a fairly extensive study of the effect

of rotation on resonances in HCO using an approximate
treatment of rotation that we have termed the adiabatic rotation
approximation.51 In that approximation the Hamiltonian is given
by

whereHJ)0 is the full Hamiltonian forJ ) 0 (which contains
a negative imaginary, absorbing potential in our applications),
and EJ(Q) is the adiabatic rotational energy for the nuclear
configuration denoted by Q, the collection of 3N - 6 internal
coordinates. In general, this energy is obtained by diagonal-
ization of the inertia tensor and solution of the usual Schro¨dinger
equation for the rotational energy eigenvalues. The procedure
simplifies for symmetric tops, where the body-fixed projection
quantum ofJ, denotedK, is also a good quantum number. In
this case the rotational energy is given by the usual symmetric
top expression, and for a prolate top

whereBh andA are the coordinate-dependent rotation “constants”
in the principal axis system. (As usual,Bh is the average of the
B andC rotation constants.) This simplified, but very useful
form of the adiabatic rotation Hamiltonian had been used by
us in approximate quantum reactive scattering calculations,82

and 20 years ago it was suggested by McCurdy and Miller in
the context of a semiclassical Hamiltonian.83 They referred to

eq 8 as the principal axis/helicity-conserving approximation.
Recently, Miller and co-workers applied this Hamiltonian with
very good success to the direct calculation of rate constants.84-86

The application of the adiabatic rotation approximation to
resonances was first tested against our previous exact calcula-
tions for J ) 1.51 A comparison of the adiabatic rotation and
exactshifts in resonance energies∆E and widths∆Γ relative
to the correspondingJ ) 0 energies and width are given in
Figure 4. As seen, there is very good agreement with the exact
results, even though there are substantial variations in both∆E
and∆Γ. Note that while∆E is always positive,∆Γ is positive,
negative, and also approximately zero.
Clearly, the shifts in the positions and widths withJ andK

depend sensitively on the resonance state. Nevertheless, we
showed that the shifts in resonance positions∆E could be fit
reasonably well using the standard expression for rotational
energies of a symmetric top given in eq 8. However, the value
of the rotation constantsBh and A depend on the particular
resonance state. This result is shown in Figure 5 whereBh and
A - Bh are plotted for the bound and resonance states of HCO
for three values of J, andK ) 1. As seen, these “constants”,
although highly state-dependent, are nearly independent ofJ.
Also shown in that figure are the rotation constants for the HCO
saddle point and HCO minimum. These are true constants, and
as seen the ones for the minimum are in better average
agreement with the exact, fluctuating ones than are the rotation
constants of the HCO dissociation saddle point. This result has
significance for the validity of theJ-shifting approximation,87-89

which we discuss next.
In the J-shifting approximation,87-89 which was introduced

for reactions that proceed via direct dynamics over a single
transition state, the state-to-state (iff) transition probability
Piff
JK is related to the one for zero total angular momentum as

follows:

Figure 3. Comparison of calculated and experimental energies and
widths of HCO resonances forJ ) 6, K ) 0. Experiment (NLBH) is
from ref 79, calculations using RLBH-M from ref 51, and calculations
using WKS-II from ref 64. The first number is the CH-stretch quantum
number, the second is the CO-stretch quantum number, and the third
is the HCO bend quantum number.

HJ ) HJ)0 + EJ(Q) (7)

HJ,K ) HJ)0 + BhJ(J+ 1)+ (A- Bh)K2 (8)

Figure 4. Comparison of exact (-) and adiabatic rotation (O)
resonance energy shifts∆E and widths∆Γ relative toJ) 0 results for
J ) K )1.

Piff
JK (E) ≈ Piff

J)0(E- EJK
q ) (9)
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whereE is the total energy, andEJK
q is the rotational energy of

the transition state. (For a linear transition stateEJK
q depends

only on J.) The same approximation can be made to the so-
called cumulative reaction probabilityNJK(E), which is the sum
of Piff

JK (E) over i and f. Thus, the simpleJ-shifting ap-
proximation for the cumulative reaction probability is

(Note that this approximation follows immediately from the
adiabatic rotation approximation by replacingEJ(Q) by the
constantEJK

q .)
The J-shifting approximation has been applied to reactions

that proceed mainly via complex formation (i.e., H+ O2,3,12,86,90

OH+ CO,21,23,91and H+ CO).52 These systems all have wells,
in addition to transition states, that cause pronounced resonance
structure in the transition probabilities. Thus, the choice of
nuclear configuration at which to evaluateEJK

q is not as
obvious as in the case of direct reaction. The two obvious
choices, the saddle point and the complex geometry, can give
thermal rate constants that differ by as much as factors of 1.8.
As noted above, we examined these two choices for the rotation
constants and concluded for HCO that the rotation constants of
the HCO complex were on average more accurate than those
of the HCO dissociation saddle point. Another test ofJ-shifting
at the level of the recombination rate constant will be reviewed
below.
The effect of rotation on resonances in HCO has also been

examined very recently using exact calculations by Whittier and
Light,36 Keller and Schinke,63 and Yang and Gray,64 who also
tested the adiabatic rotation approximation and found it to be
in good agreement with their exact calculations. A comparison
of their exact and adiabatic rotation approximation widths for
J ) 6 and J ) 10 is shown in Figure 6, where very good

agreement is seen. Note that the widths of this particular
resonance increases nonlinearly withK over the entire range of
K.
The qualitative behavior of the widths withK shown in Figure

6 and also in Figure 4 can be understood from simple
perturbation theory.81 If we considerHJ ) 0 as the zeroth-order
HamiltonianEJ(Q) as the perturbation, then to first order, the
shift in theJ ) 0 complex resonance energies is given by the
usual expression,〈øn

(0)|EJ(Q)|øn(0)〉, where øn
(0) is the complex

eigenfunction ofHJ ) 0 for the nth resonance. This complex
energy shift, denoted∆εn

(J), is given by

where∆En
(J) and∆Γn

(J) are the shifts in the position and width
of the resonance.
For a prolate symmetric top,EJ is given by the usual

expression, and thus

If we write øn
(0) in terms of its real and imaginary components,

then we have

where

Figure 5. Comparison of theBh-rotation andA-Bh-rotation constants
for J ) 1 (-), J ) 6 (×), andJ ) 20 (O). States 1-16 are bound
states and state numbers above 16 are resonances. TheBh-constant and
the A-Bh constant corresponding to the HCO minimum (long dash)
and saddle point (short dash) are also given.

NJK(E) ≈ NJ)0(E- EJK
q ) (10)

Figure 6. Comparison of exact and approximate, adiabatic rotation
method (ARM), resonance energies and widths of the HCO resonance
(0,0,5) forJ ) 6 and 10. The number near each data point is the value
of K. Results are from ref 88.

∆εn
(J) ) ∆En

(J) -
i∆Γn

(J)

2
(11)

∆εn
(J,K) ) 〈øn

(0)|Bh|øn(0)〉J(J+ 1)+ 〈øn
(0)|A- Bh|øn(0)〉K2 (12)

øn
(0) ) φn

(0) + iπn
(0) (13)

∆En
(1) ) Bhn

(0)J(J+ 1)+ (An
(0) - Bhn

(0))K2

-∆Γn
(1)

4
) ân

(0)J(J+ 1)+ (Rn
(0) - âhn

(0))K2 (14)
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and

Thus, to first order, the shifts in both the positions and widths
scale withJ andK according to the symmetric top expression.
For resonances, the real part oføn

(0) is generally much larger
than the imaginary part, and so, in general,Bhn

(0) andAn
(0) are

positive. Thus the shifts in the resonance positions are positive,
as expected. However, the shifts in the widths may be positive,
zero, or negative, because the constantsBhn

(0) andRn
(0) may be of

any sign or approximately zero. (For bound states the energies
and zeroth-order wave functions are real and so the imaginary
part of∆εn

(J,K) is zero.)
Perturbation theory thus provides as least a qualitative

framework to understand the behavior of the shifts in positions
and widths of resonances with respect to overall rotation. Of
course, the validity of this framework depends on the validity
of first-order perturbation theory.
We tested the accuracy of first-order perturbation theory and

found good accuracy for shifts in widths less than about 10
cm-1.81 For significantly larger shifts, the accuracy of perturba-
tion theory decreases, as expected. The results in Figure 6
confirm this indirectly. As seen, the width shows a nearly
quadratic dependence onK, as predicted from perturbation
theory, except forK ) 10, for which the width is large, and
where perturbation theory is evidently breaking down.
Finally, it is worth noting that another version ofJ-shifting

results if the rigorous pertubation expression〈øn
(0)|EJ(Q)|øn(0)〉 is

approximated byEJ(〈Q〉).
Resonances and Recombination/Dissociation.Resonances

play an important role in recombination/dissociation reactions

This can be seen even in the simple Lindemann mechanism in
which the energized AB complex is treated in steady state and
assumed to be stabilized in every collision with M. That
mechanism leads to the well-known expression for the recom-
bination rate constant

whereki are the unimolecular decay rates, which in the isolated
resonance limit are given byΓi/p, whereΓi is the width of the
ith quasibound, resonance state,ω is the collision frequency,
andQreact is the partition function of the reactants A and B. In
the quasicontinuum limit,kr is given by

whereF(E) is the density of states, andk(E) is the microca-
nonical rate of decay (typically given by RRKM theory).
In the low pressure limit, defined byω , ki, we have

whereQcomp is the partition function of the collision complex.
There have been several quantum dynamical formulations of

recombination reactions, based on the Lindemann mechanism
and with the strong collision assumption. Some time ago, I
proposed an extension of Smith’s theory of atom-atom
recombination,92 to molecular recombination.93 In this ap-
proach,Qcomp of eq 19 is given by

whereQ(E) is the Smith collision lifetime matrix, eq 1, which
is obtained from the full multichannel scattering matrix for the
A + B scattering system.
This definition of Qcomp suffers from the possibility of

negative values because TrQ can be negative at energies where
resonances do not form. At resonance energies, TrQ is large
and positive. This formulation of recombination was used
recently by Kendrick and Pack in an application to H+ O2.8,9

They comparedQcomp using eq 20 directly, with two variants.
In one only the positive part of TrQ was used, and in the other
the positive part of TrQ was fit to a Lorentzian. They found
15-24% differences inQcompusing these three approaches, over
the temperature range 100 to 600 K.
Recently, Miller proposed another quantum approach to

obtain the recombination rate constant (still within the strong
collision assumption).94 Miller defined the complex region
using a dividing surface, which typically would be at the
dissociation saddle point or variational transition state. Within
this region the complex can be stabilized with a classical
probability

whereτ is the lifetime of the complex andω is the collision
frequency. This is essentially a classical picture; the generaliza-
tion to quantum theory made by Miller was done by using the
quantum flux-flux correlation functionC(t),95 evaluated at the
dividing surface, with the result94

Miller has shown how his formulation reduces to the Lindemann
theory, eq 17, in the limit of a set of dense, but isolated
resonances.
We applied Miller’s theory to recombination in H+ CO;52

however, our calculations were explicitly done only for zero
total angular momentum, and theJ-shifting approximation was
applied to obtain the full rate constant. Making this approxima-
tion yields the following expression forkr(T):

whereQ* (q)rot is the rotational partition function of the complex
(or transition state) andkr

J)0(T) is the recombination rate
constant for zero total angular momentum. As noted above,
the choice of configuration to evaluate the rotation constants is
not obvious for a radical-radical system. We used the rotation
constants of the stable HCO to evaluateQ*rot. The other
obvious choice, the recombination saddle point dividing surface,
yielded a partition function 1.8 timesQ*rot.

kr ) Qreact(T)
-1∑

i

exp(-âEi)ω

) [Qcomp(T)/Qreact(T)]ω (19)

Qcomp)∫dE exp(-âE)TrQ(E)/h (20)

P) 1- exp(-ωτ) (21)

kr ) 1
Qreact
∫dt exp(-ωt)Cf(t). (22)

kr(T) ) Q* (q)rot (T)kr
J)0(T) (23)

âhn
(0)≡ 〈φn

(0)|Bh|φn(0)〉 - 〈πn
(0)|Bh|πn

(0)〉 (15a)

An
(0)≡ 〈φn

(0)|A|φn(0)〉 - 〈πn
(0)|A|πn

(0)〉 (15b)

Bhn
(0)≡ 〈πn

(0)|Bh|φn(0)〉 (16a)

Rn
(0)≡ 〈πn

(0)|A|φn(0)〉 (16b)

A + B + M h AB + M

kr )
1

Qreact
∑
i

exp(-âEi)ωki/(ω + ki) (17)

kr ) 1
Qreact
∫dE exp(-âE)F(E)

ωk(E)
ω + k(E)

(18)
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TheJ-shifting approximation also been used by Mandelshtam
et al. in their recent calculation of the recombination rate for H
+ O2,12 and also by Germann and Miller in their calculations
of recombination and reaction in H+ O2.90 In both cases
Q*rot of the complex was used. (Below we present a simple test
of J-shifting for H+CO recombination.)
TheJ) 0 correlation function for H+ CO is given in Figure

7 for T ) 1000 K and for a dividing surface at the dissociation
saddle point. The negative part corresponds to recrossing,
outgoing flux. As seen, the flux leaves the region of the
complex between 5 and 10 fs. Figure 8 shows the corresponding
kr at 293 and 500 K along with the approximate results from
the Lindemann mechanism. The differences between the
Lindemann and Miller theories are mainly due to the contribu-
tion from nonresonance scattering states in Miller’s theory.

Comparison with Experiment. In order to make compari-
son of our results with experiment at room temperature, with
Ar as the buffer gas,96 we needed to convert the collision
frequency ω to the pressure, which is the experimental
independent variable. We used the simplest kinetic expression,
i.e.,

where σ is the (unknown) average cross section for the
stabilization reaction, and whereV is the average relative speed
between Ar and metastable HCO. To determine the constant
C we did a least-squares fit of experimental data. Then at one
value of the pressure we equated the calculated rate constant to
the experimental fit to determine the constantC. The rate
constant from Miller’s theory, using this calibration at one
pressure, is plotted in Figure 9 as a solid line, along with the
experimental data. As seen, the pressure dependence of the
experimental rate constant is well reproduced by the calculations.
A Simple Test of J-Shifting. As already noted,J-shifting

has been used in calculations of H+ CO and H + O2

recombination; in both cases rotation constants of complex were
used. Based on the appraisal ofJ-shifting for HCO resonances
given above, the expectation is that using the rotation constants
of the complex would be more realistic than using those of
H-CO saddle point. However, we did a direct test for H+
CO recombination using the simple Lindemann equation, eq
17 to perform the test.97 Rewriting that equation to display the
summation of rotational quantum numbers explicitly, we have

where the resonance energies and widths depend onJ andK.
As already noted, the resonance energies for HCO could be

accurately represented by the symmetric-top expression

where the state-dependent rotation “constants” are determined
by fitting the calculated shifts in resonance energies to the
symmetric top energy expression for several values ofJ andK.
As seen in Figure 5 these constants vary considerably with the
resonance state; however, in all cases are the constants nearly
independent ofJ and K. (That theJ and K-dependence of
resonance energies can be represented by eq 26 is significant,

Figure 7. Flux-flux correlation function for H+ CO at 1000 K
evaluated at a dividing surface at the H+ CO recombination saddle
point.

Figure 8. H + CO recombination rate constant as a function of
collision frequencyω from Miller’s new theory and the Lindemann
theory for two temperatures indicated.

Figure 9. Comparison of experimental and calculated recombination
rate constant for H+ CO.

ω ) σV P
RT

) CP (24)

kr )
1

Qreact
∑
J)0

∞

(2J+ 1) ∑
K)-J

J

∑
i

exp(-Ei
J,K/kBT)ki

J,Kω/(ki
J,K + ω)

(25)

Ei
J,K ) Ei

J)K)0 + Bh iJ(J+ 1)+ (Ai - Bh i)K
2 (26)
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and that expression may form the basis of the next generation
of a J-shifting model.)
The J-shifting approximation to this expression is obtained

by using state-independent rotation constants. For HCO at
equilibrium,Bh equals 1.40 cm-1 andA- Bh equals 23.91 cm-1.
The corresponding values forBh andA- Bh at the H-CO saddle
point are 1.31 and 7.0 cm-1. Thus, the HCO minimum and
saddle-point values ofBh are quite similar but the values ofA
are quite different.
The recombination rate constant was evaluated using the full

expression, eq 25, and in addition we used theJ ) 0 widths
instead of theJ andK dependent widths. This simplification
was adequate for our purposes for two reasons. As seen in
Figure 4, theJ andK dependence of the shifts in the widths
fluctuate about equally positively and negatively relative to the
J ) 0 widths, and so using theJ ) 0 widths is reasonable in
averaged sense. Second, as noted already, the widths cancel
out of the expression forkr in the fall-off region, which is where
we focused our attention. The recombination rate constant based
on J-shifting simply uses a fixed set of rotation constants in eq
25. Since the rotation constants in J-shifting are independent
of the particular resonance, the sums overJ andK can be done
independently to obtain the simple expression given by eq 23
above, where in the testQ* (q)rot is the rotational partition func-
tion evaluated at the complex geometry (/) or the transition
state (q).
The results are shown in Figure 10, where the recombination

rate constant based on the state-dependent rotation constants,
the benchmark result, is shown along with theJ-shifting
approximation for two choices of theA andBh constants. As
seen, the choice of rotation constants corresponding to the HCO
minimum gives a result that is quite close to the benchmark
result. The recombination rate constant using the rotation
constants corresponding to the H-CO saddle point are much

larger than the correct one. This follows mainly from the small
value of theA constant at the saddle point, which leads to a
significant overestimate of the density of resonances. Thus, for
this example we conclude that using the rotation constants of
the HCO complex is more accurate than using rotation constants
of the saddle point. (Very recently, Miller and co-workers
reported that using rotation constants of the saddle point is quite
accurate for the rate constant of the OH+ O reaction.86)
Beyond the Strong Collision Assumption. The strong

collision assumption of the Lindemann mechanism is clearly
an oversimplification. A more rigorous approach to recombina-
tion would treat the entire event as a scattering process. This
would be a prohibitively demanding calculation if done exactly.
Thus, we have introduced several approximations in doing such
a calculation in which Ar is the collision partner M.98 First,
we treated the vibrations in a fully coupled fashion but the HCO
rotation was treated using the infinite-order-sudden approxima-
tion. This approach was implemented some time ago for atom-
diatom systems,99,100 and was tested by Green et al. for H+
CO at a total energy of 1 eV.101 They found that cross sections
summed over final rotational states that were larger than 0.5
a02 agreed with those obtained in the more accurate centrifugal
sudden approximation to within 15% or less. This result is in
accord with the general expectation that the sudden treatment
of rotation should be more accurate for larger cross sections
than for very small ones.
The generalization of the vibrational coupled-channel/

rotational sudden approximation to polyatomic molecules was
made by Clary and co-workers,102who termed the method VCC-
IOS. Their calculations focused on low-lying vibrations, which
were adequately described by the harmonic-oscillator, normal-
mode approximation. Such a description is not adequate for
highly excited vibrational states. For that purpose we used the
general Hamiltonian based on Jacobi coordinates. However,
we followed much of the methodology developed by Clary and
co-workers for other aspects of the calculation.
The other approximation we used is the discretization of the

continuum. This approach was suggested 20 years ago by
Wolken103and Knapp and Diestler,104who applied it to a model
collinear system. Recently, Nobusada et al. applied this
approach to several dissociation calculations, including one using
the VCC-IOS method.105

The VCC-IOS Hamiltonian for Ar-HCO is

where HHCO is the Hamiltonian for nonrotating HCO, the vector
Q is the position vector of Ar with to the center of mass of
HCO, andθ and æ are the polar angles ofQ relative to a
molecule fixed coordinate system in which theZ-axis is along
the CO bond (which is approximately the symmetric topA-axis.)
The internal coordinates of HCO are the usual Jacobi ones, R,
the distance of H to the center-of-mass of CO,r, the CO
internuclear distance, andγ, the angle betweenR and r , such
that linear HCO corresponds toγ equal to zero. The interaction
potentialVint we used was a simple sum of Lennard-Jones Ar-X
potentials, where X equals H, C, and O. (This is certainly a
major approximation and calculations using an ab initio-based
potential are underway.)
The scattering wavefunction is given by a coupled-channel

expansion in terms of the HCO vibrational wave functions,
Fn(r,R,γ), times unknown radial wave functions,gn

L(Q;θ,æ), as
follows:

Figure 10. Recombination rate constant for H+ CO using accurate
resonance energies (solid line) and J-shifting approximation using
rotation constants at the HCO minimum (short dash) and at the H-CO
saddle point (long dash) forT ) 500 and 1000 K.

H ) HHCO + TQ +
L(L + 1)p2

2µAr,HCOQ
2

+ Vint(r,R,γ,Q;θ,æ) (27)
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Inserting this expansion of the wave function into the Schro¨d-
inger equation yields the standard matrix differential equations
for the radial wave functions:

whereVn′n ) 〈Fn′|Vint|Fn〉, En′n ) (E- εn)δn′n, and whereεn are
the vibrational eigenvalues andE is the total energy.
After propagating the solution matrixg

≈
L(Q;θ,æ) to the

noninteracting region, the scattering matrixS
≈
L(E;θ,φ) is ob-

tained, and from it, the cross section for the transition from the
initial state i to the final state f is given by

where〈|Si,fL (E)|2〉 is the spherical average of|Si,fL (E;θ,φ)|2. This
cross section is implicitly summed over final rotational states
of HCO and corresponds to the initial nonrotating state. In our
implementation of this approach, we preaveraged the interaction
potential overφ to save computer effort, and so the scattering
matrix is only a function ofθ.
The one set of results of this calculation that I review here

are the collision-induced dissociation cross sections. These were
calculated for each initial bound state to all final unbound states.
To condense the information, the cross sections were summed
over all final unbound states corresponding to resonances, and
also separately to unbound, nonresonance states. These cross
sections are plotted separately for the two largest sets of cross
sections in Figure 11. Both states shown have initial excitation
in the CH-stretch. As seen, the cross sections corresponding
to resonances are considerably larger than the ones correspond-
ing to excitation of non-resonance states; however, cross sections
to nonresonance states are not negligible. By microscopic
reversibility this implies that while recombination is dominated
by resonances, direct recombination from nonresonant scattering
is not negligible. Clearly the relative importance of resonances
in recombination/dissociation is qualitatively governed by the
density of resonances. HCO has a fairly sparse set of
resonances, and even so, they dominate dissociation, because
energy transfer to (and from them) is far more probable than to
non-resonance scattering states. However, as recently shown
by Pack and co-workers106 for atom-atom recombination,
nonresonant dissociation can dominate resonant dissociation if
the spectrum of resonances is very sparse.
Next, I review our calculations on resonances in HOCO, and

raise issues about reduced-dimensionality approaches to describe
reactions in larger systems that are dominated by resonances.
HOCO. The reaction OH+ CO f H + CO2 is of

importance in combustion and in atmospheric chemistry, and
from a basic research perspective it has become an important
prototype of reactions that proceed via complex formation. The
reaction has been extensively studied both and theoretically and
experimentally. (References to the extensive experimental
literature can be found in the theoretical papers, cited below.)
Theoretical interest in this reaction began with a realistic

potential energy surface that was used in extensive quasiclassical
trajectory calculations.107-109

The first quantum calculations of the reaction probability were
done by Schatz and Dyke.18 They used a two-degree-of-
freedom, reduced dimensionality approach in which the non-
reactive CO bond was treated as a spectator. The two active
degrees of freedom were the OH bond length and the distance
between the OH and CO centers of mass. The full six-degree-
of-freedom (DOF) potential was minimized for fixed values of
these two distances with respect to two internal angles and the
spectator CO stretch. At each minimum the local zero-point
energy of the two bends and CO stretch was calculated and
added to the potential at the minimum.
The calculated reaction probability exhibited sharp resonant

structure which was attributed to quasibound states of HOCO.
Subsequently, scattering calculations on the 2-DOF reduced
dimensionality potential were reported by Hernandez and
Clary.19 They also reported calculations of the resonance
positions and widths, using a stabilization method recently
extended developed by Mandelshtam and Taylor42,110 to also
provide resonance widths. They found generally good agree-
ment between the stabilization results and the exact results from
the scattering calculation. However, widths from the stabiliza-
tion calculations were not reported for a number of the narrower
resonances. We recently used a complex absorbing potential
in the two arrangement channels, OH+ CO and H+ CO2, and
an extendedL2 basis to calculate the resonances of the 2-DOF
Hamiltonian.20 We obtained very good agreement for the
positions and widths for all the resonances reported in the
scattering calculations, as shown in Table 1.
There have also been limited 3-,22 4-,23 and 5-DOF24 quantum

calculations of the reaction probabilities for this reaction.
However, these were for a limited number of initial rotational
states of OH, and so it was not possible to use standard energy-

ΨL(Q,r,R,γ;θ,æ) ) ∑
n

Fn(r,R,γ)gn
L(Q;θ,æ) (28)

-p2

2µAr,HCO
g
≈
L(Q;θ,æ) +

[L(L + 1)

2µQ2
I
≈

+ V
≈
(Q;θ,æ) - E

≈] g≈L(Q;θ,æ) ) 0 (29)

Qi,j(E) )
π

ki
2
∑
L)0

(2L + 1)〈|Si,fL (E) - δi,f|2〉 (30)

Figure 11. Collision-induced dissociation cross section for the two
initial HCO states indicated. The curve labeled “resonance” is the cross
section summed over all resonances. The curve labeled “nonresonance”
is the cross section summed over all nonresonances.
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shifting approaches86,88 to obtain an approximate, full 6-DOF
cumulative reaction probability (CRP). For that reason, we used
the 2-DOF scattering calculations18,19to obtain an approximate
6-DOF CRP. Thus, the approximate 6-DOF CRP was given
by91

where

and whereN2-DOF(E) is the 2-DOF CRP (which we obtained
from previous scattering calculations18,19), En

q are the quantized
energies at the cis H-CO2 transition state (using the harmonic
normal mode frequencies) not explicitly included in the 2-DOF
Hamiltonian, andEJK are the rotational energies of HOCO,
treated as a symmetric prolate top. We considered two
configurations in which to obtain rotation constants for theJ(K)-
shifting, and found a factor of about 1.5 difference in the
resulting rate constant, with the H-CO2 transition state rate
constant being about 1.5 times smaller than the rate constant
using the rotation constants of HOCO. The approximate N(E)
given above and using the transition state rotation constants is
shown in Figure 12. As seen, it is highly structured, but on the
average increasing with E, the total energy. The increase with
E is due to overlapping of resonances in the 2-DOF scattering
calculation.
While it is clear that the exactN(E) is all that is needed to

obtain the exact bimolecular rate constant, independent of
whether the reaction is characterized as “direct” or “complex”
(i.e., resonance-dominated), there does exist some ambiguity
about the proper approximation to make to a reduced dimen-

sionality CRP to get the best approximate full dimensional CRP.
That is, shouldN(E) be approximated by transition state theory
appropriate for a direct reaction or by statistical theory, which
is appropriate for a complex-forming reaction? The energy-
shifting approximation used above assumes that the dynamical
bottleneck in going from 2-DOF to 6-DOF is at the exit
transition state. However, other choices are possible, and the
“correct” choice is still an open question. A detailed discussion
of this important point can be found in papers by Dzegilenko
and Bowman91 and Wang et al.111

Another important issue is the treatment of the CO spectator
mode in the OH+ CO reaction. As noted above, the CO-
stretch was decoupled in all quantum scattering calculations
performed to date. The possible justification for this is that
this bond is nonreactive, meaning that it is present both in the
reactants and in the products. Thus, one can expect that it does
not actively exchange energy with the other five modes and
could be treated adiabatically or simply averaged over. How-
ever, there are two nagging counterpoints to this argument. The
most evident one is that while the CO-stretch is a “normal mode”
for the CO molecule, it is not for CO2. (The difference between
the symmetric and antisymmetric stretches in CO2 is slightly
more than 1000 cm-1 indicating that CO2 cannot be described,
even approximately, as two uncoupled CO oscillators.) The
other point is that HOCO resonances in which the CO-stretch
is highly excited certainly exist. What is not known is the extent
to which these resonances contribute to the CRP. Also, a related
issue is whether the inclusion of the CO-stretch can be
approximated by a simple energy-shift approximation, as was
done in eq 31. Note this energy shift, when applied to
resonances, simply means that 3-DOF resonances are ap-
proximated by the set of 2-DOF resonances shifted by the
addition of CO vibrational energies.
To begin an examination of the role played by the CO stretch

we performed 3-DOF complexL2 calculations of 218 resonances
with the CO mode explicitly considered.21 We were able to
assign quantum numbers to many of these resonances, and could
identify those that correspond to highly excited CO. The
spectrum of these 3-DOF resonances is shown in Figure 13
along with the previous 2-DOF resonances for energies in which
both OH+ CO and H+ CO2 channels are open. As seen,
there is a distinct set of additional resonances that stand out
from the 2-DOF ones in having much smaller widths than the
widths 2-DOF resonances. These narrow resonances are ones
in which the CO-stretch is highly excited. We next examined
the extent to which these additional resonances could be
recovered using a simple CO-stretch energy shift applied to the
2-DOF resonances. (We used a simple harmonic approximation
for the CO-stretch vibrational energy, and used the frequency

TABLE 1: Comparison of Present Resonance Energies and
Widths for HOCO with Those of Hernandez and Clary (HC)
(Reference 19)

E (cm-1) Γ (cm-1)

present HC-scatt HC-stab present HC-scatt HC-stab

2699.0 2698.0 2698.0 0.092 0.141
2730.0 2729.0 2728.0 1.65 1.82 2.16
2752.2 2748.0 2754.0 0.89 1.10
2768.3 2766.0 2769.0 0.54 0.527
3241.3 3240.0 3241.0 0.37 0.406
3282.6 3280.0 3281.0 1.13 1.22 1.01
3308.6 3307.0 3307.0 2.42 2.71 2.25
3762.8 3761.0 3762.0 0.63 0.745
3815.6 3814.0 3813.0 0.25 0.252
3864.3 3863.0 3862.0 2.44 2.49 2.42
4249.2 4246.0 4248.0 1.12 1.29 1.31
4353.4 4351.0 4352.0 0.25 0.225
4424.5 4423.0 4422.0 4.96 4.63 4.51
4699.4 4696.0 4698.0 3.24 3.48 2.99
4882.5 4880.0 4880.0 0.29 0.291
4977.3 4976.0 4975.0 3.74 4.43 5.98
5111.5 5107.0 5110.0 5.97 6.65 6.19
5398.5 5396.0 5396.0 1.76 2.00 2.88
5494.9 5490.0 5493.0 7.21 6.65 2.91
5528.3 5527.0 5526.0 5.71 7.49 5.48
5820.9 5816.0 5820.0 6.54 7.00 8.06
5915.6 5912.0 5914.0 0.48 0.430
6072.2 6073.0 6071.0 15.3
6086.5 6080.0 6090.0 1.79
6410.5 9.59
6611.9 11.7
6893.2 9.99
7352.9 9.39

Figure 12. Cumulative reaction probablity for OH+ COf H + CO2.

N(E) ) ∑
J

(2J+ 1) ∑
K)-J

J

NJ)0(E- EJK) (31)

NJ)0(E) ) ∑
n)0

N2-DOF(E- En
q) (32)

Feature Article J. Phys. Chem. A, Vol. 102, No. 18, 19983015



of the CO-mode in HOCO, 1875 cm-1.) The results are shown
graphically in Figure 14 for the entire energy range spanning
energies where the HOCO complex can decompose. As seen,
the detailed results are at least qualitatively similar, and coarse-
grained averaging shows semiquantitative agreement.21 Note
especially that the additional narrow resonances in Figure 12
for energies above 3000 cm-1 appear in this figure by applying
the energy-shift to the 2-DOF resonances.
Thus, most of the narrow 3-DOF resonances are built on low-

energy 2-DOF resonances with the addition of CO vibrational
excitation. Note that the widths of the shifted 2-DOF resonances
are unaffected by the CO energy-shift. There are among the
dense set of 3-DOF resonances a small number of very narrow
resonances that correspond to true bound states in the 2-DOF
space but in three degrees of freedom are resonances due to
high overtone excitation of the CO stretch. These resonances
cannot be accounted for obviously by an energy-shift ap-
proximation.
Overall, the 3-DOF resonance spectrum is reasonably well

approximated by the shifted 2-DOF resonances. It remains to
be seen if the 3-DOF cumulative reaction probability can be
well approximated by the shifted 2-DOF one.
Summary and Possible Future Directions. I reviewed

methods to calculate and characterize resonances in molecular
complexes, and presented extensive results, including compari-
sons between theory and experiment, for HCO. The effect of
overall rotation on the positions and widths of resonances was
also examined in detail, and several tests of the adiabatic rotation
approximation, first-order perturbation theory, andJ-shifting

were presented. The importance of resonances in the Linde-
mann theory of dissociation/recombination reactions was de-
scribed, as was an application of Miller’s new theory of
recombination to H+ CO. The first calculations to describe
dissociation of HCO in collisions with Ar using scattering theory
were also reviewed. Resonances in HCO were shown to play
a major, though not totally dominant role in dissociation/
recombination. More calculations of this type will be useful
in order to test and modify the “strong collision assumption”,
which is made in the Lindemann theory as well as Miller’s new
theory. It will also be important also to develop realistic
interaction potentials for recombination dynamics.
I also reviewed reduced dimensionality models for resonances

and the cumulative reaction probability for the H+ CO2 f
[HOCO]f OH+ CO reaction. An important issue that needs
further study is how to best approximate the full dimensionality
cumulative reaction probability from a reduced dimensionality
calculation (i.e., whether the standard energy-shift approach
continues to be apply, or whether a statistical treatment of
uncoupled degrees of freedom is better). A partial study of this
was reviewed by examining the role of the spectator CO-stretch
in the spectrum of HOCO resonances. This was done for the
three-degree-of-freedom model with those of a 2-DOF model
which does not include coupling to the CO-stretch. While not
all the 3-DOF resonances can be accounted for by applying
simple energy-shifts to the 2-DOF spectrum, most were. This
provides some evidence that simple energy-shifting may still
apply to complex-forming reactions. A definitive test in which
energy shifting applied to the 2-DOF cumulative reaction
probability is compared to the 3-DOF cumulative reaction
probability needs to be done.
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